Distribution dependent SDEs driven by additive fractional Brownian motion

نویسندگان

چکیده

Abstract We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $$H\in (0,1)$$ H ∈ ( 0 , 1 ) . establish strong well-posedness under a variety assumptions on the drift; these include choice $$\begin{aligned} B(\cdot ,\mu )=(f*\mu )(\cdot ) + g(\cdot ), \quad f,\,g\in B^\alpha _{\infty ,\infty },\quad \alpha >1-\frac{1}{2H}, \end{aligned}$$ B · μ = f ∗ + g ∞ α > - 2 thus extending results Catellier and Gubinelli (Stochast Process Appl 126(8):2323–2366, 2016) to case. The proofs rely some novel stability estimates for singular SDEs use Wasserstein distances.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion

We demonstrate that stochastic differential equations (SDEs) driven by fractional Brownian motion with Hurst parameter H > 1 2 have similar ergodic properties as SDEs driven by standard Brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems satisfy a suitable version of the strong Feller property and we conclude that the...

متن کامل

A Milstein-type scheme without Levy area terms for SDEs driven by fractional Brownian motion

In this article, we study the numerical approximation of stochastic differential equations driven by a multidimensional fractional Brownian motion (fBm) with Hurst parameter greater than 1/3. We introduce an implementable scheme for these equations, which is based on a second order Taylor expansion, where the usual Lévy area terms are replaced by products of increments of the driving fBm. The c...

متن کامل

Flow properties of differential equations driven by fractional Brownian motion

We prove that solutions of stochastic differential equations driven by fractional Brownian motion for H > 1/2 define flows of homeomorphisms on R. AMS Subject Classification: 60H05, 60H07

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2022

ISSN: ['0178-8051', '1432-2064']

DOI: https://doi.org/10.1007/s00440-022-01145-w